Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2005, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443338

RESUMEN

Antimicrobial resistance is a global health threat that requires the development of new treatment concepts. These should not only overcome existing resistance but be designed to slow down the emergence of new resistance mechanisms. Targeted protein degradation, whereby a drug redirects cellular proteolytic machinery towards degrading a specific target, is an emerging concept in drug discovery. We are extending this concept by developing proteolysis targeting chimeras active in bacteria (BacPROTACs) that bind to ClpC1, a component of the mycobacterial protein degradation machinery. The anti-Mycobacterium tuberculosis (Mtb) BacPROTACs are derived from cyclomarins which, when dimerized, generate compounds that recruit and degrade ClpC1. The resulting Homo-BacPROTACs reduce levels of endogenous ClpC1 in Mycobacterium smegmatis and display minimum inhibitory concentrations in the low micro- to nanomolar range in mycobacterial strains, including multiple drug-resistant Mtb isolates. The compounds also kill Mtb residing in macrophages. Thus, Homo-BacPROTACs that degrade ClpC1 represent a different strategy for targeting Mtb and overcoming drug resistance.


Asunto(s)
Mycobacterium smegmatis , Mycobacterium tuberculosis , Proteolisis , Dimerización , Descubrimiento de Drogas
2.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37137307

RESUMEN

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Endopeptidasa Clp/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteostasis
3.
Cell ; 185(13): 2338-2353.e18, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35662409

RESUMEN

Hijacking the cellular protein degradation system offers unique opportunities for drug discovery, as exemplified by proteolysis-targeting chimeras. Despite their great promise for medical chemistry, so far, it has not been possible to reprogram the bacterial degradation machinery to interfere with microbial infections. Here, we develop small-molecule degraders, so-called BacPROTACs, that bind to the substrate receptor of the ClpC:ClpP protease, priming neo-substrates for degradation. In addition to their targeting function, BacPROTACs activate ClpC, transforming the resting unfoldase into its functional state. The induced higher-order oligomer was visualized by cryo-EM analysis, providing a structural snapshot of activated ClpC unfolding a protein substrate. Finally, drug susceptibility and degradation assays performed in mycobacteria demonstrate in vivo activity of BacPROTACs, allowing selective targeting of endogenous proteins via fusion to an established degron. In addition to guiding antibiotic discovery, the BacPROTAC technology presents a versatile research tool enabling the inducible degradation of bacterial proteins.


Asunto(s)
Proteínas Bacterianas , Chaperonas Moleculares , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteolisis
4.
J Proteome Res ; 19(4): 1435-1446, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32154730

RESUMEN

To understand bacterial reactions to environmental stress or infection-related processes, it is necessary to identify the involved proteins. In mass spectrometry-based proteomics, the method of choice for spectra-to-peptide-match is database search, but in recent times, spectral libraries have come into focus. Here, we built a mass spectral library from Streptococcus pneumoniae D39, reflecting 76% of the theoretical proteome of the organism. Besides the proteins themselves, posttranslational protein modifications especially reveal central hubs of regulation in bacterial pathogenesis. Here, for example, phosphorylation events are involved in the signal transduction and regulation of virulence. Although there have been major advances in phosphoproteomics, identification of this modification is still challenging. To enhance the number of phosphorylated peptides, which can be reproducibly detected, a comprehensive mass spectral library of the S. pneumoniae D39 phosphoproteome has been compiled in addition to the comprehensive total proteome mass spectral library. The phosphopeptide library was manually validated, and the data quality was additionally proven by analyses of synthetic phosphorylated peptides. In total, 128 phosphorylated proteins were revealed, of which many are involved in glycolysis, purine metabolism, protein biosynthesis, and virulence. The publicly available, thoroughly validated spectral libraries are an excellent resource to improve and speed up future investigations on the proteome and phosphoproteome of pneumococci.


Asunto(s)
Fosfoproteínas , Streptococcus pneumoniae , Espectrometría de Masas , Fosforilación , Proteoma , Proteómica
5.
J Proteome Res ; 18(1): 265-279, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30358407

RESUMEN

The Gram-positive bacterium Staphylococcus aureus plays an important role as an opportunistic pathogen and causative agent of nosocomial infections. As pathophysiological research gained insights into host-specific adaptation and a broad range of virulence mechanisms, S. aureus evolved as a model organism for human pathogens. Hence the investigation of staphylococcal proteome expression and regulation supports the understanding of the pathogenicity and relevant physiology of this organism. This study focused on the analysis of protein regulation by reversible protein phosphorylation, in particular, on arginine residues. Therefore, both proteome and phosphoproteome of S. aureus COL wild type were compared with the arginine phosphatase deletion mutant S. aureus COL ΔptpB under control and stress conditions in a quantitative manner. A gel-free approach, adapted to the special challenges of arginine phosphorylations, was applied to analyze the phosphoproteome of exponential growing cells after oxidative stress caused by sublethal concentrations of H2O2. Together with phenotypic characterization of S. aureus COL ΔptpB, this study disclosed first insights into the physiological role of arginine phosphorylations in Gram-positive pathogens. A spectral library based quantification of phosphopeptides finally allowed us to link arginine phosphorylation to staphylococcal oxidative stress response, amino acid metabolism, and virulence.


Asunto(s)
Adaptación Fisiológica , Arginina/metabolismo , Proteómica/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Fosforilación , Proteoma/análisis , Proteoma/metabolismo , Virulencia/efectos de los fármacos
6.
Virulence ; 9(1): 363-378, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29233035

RESUMEN

Wound-colonizing microorganisms can form complex and dynamic polymicrobial communities where pathogens and commensals may co-exist, cooperate or compete with each other. The present study was aimed at identifying possible interactions between different bacteria isolated from the same chronic wound of a patient with the genetic blistering disease epidermolysis bullosa (EB). Specifically, this involved two different isolates of the human pathogen Staphylococcus aureus, and isolates of Bacillus thuringiensis and Klebsiella oxytoca. Particular focus was attributed to interactions of S. aureus with the two other species, because of the high staphylococcal prevalence among chronic wounds. Intriguingly, upon co-cultivation, none of the wound isolates inhibited each other's growth. Since the extracellular proteome of bacterial pathogens is a reservoir of virulence factors, the exoproteomes of the staphylococcal isolates in monoculture and co-culture with B. thuringiensis and K. oxytoca were characterized by Mass Spectrometry to explore the inherent relationships between these co-exisiting bacteria. This revealed a massive reduction in the number of staphylococcal exoproteins upon co-culturing with K. oxytoca or B. thuringiensis. Interestingly, this decrease was particularly evident for extracellular proteins with a predicted cytoplasmic localization, which were recently implicated in staphylococcal virulence and epidemiology. Furthermore, our exoproteome analysis uncovered potential cooperativity between the two different S. aureus isolates. Altogether, the observed exoproteome variations upon co-culturing are indicative of unprecedented adaptive mechanisms that set limits to the production of secreted staphylococcal virulence factors.


Asunto(s)
Proteínas Bacterianas/análisis , Coinfección/microbiología , Epidermólisis Ampollosa/microbiología , Interacciones Microbianas , Proteoma/análisis , Bacillus thuringiensis/química , Bacillus thuringiensis/crecimiento & desarrollo , Bacillus thuringiensis/aislamiento & purificación , Humanos , Klebsiella oxytoca/química , Klebsiella oxytoca/crecimiento & desarrollo , Klebsiella oxytoca/aislamiento & purificación , Espectrometría de Masas , Staphylococcus aureus/química , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/aislamiento & purificación
7.
Mol Cell Proteomics ; 17(2): 335-348, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29183913

RESUMEN

Reversible protein phosphorylation is one of the major mechanisms in the regulation of protein expression and protein activity, controlling physiological functions of the important human pathogen Staphylococcus aureus Phosphorylations at serine, threonine and tyrosine are known to influence for example protein activity in central metabolic pathways and the more energy-rich phosphorylations at histidine, aspartate or cysteine can be found as part of two component system sensor domains or mediating bacterial virulence. In addition to these well-known phosphorylations, the phosphorylation at arginine residues plays an essential role. Hence, the deletion mutant S. aureus COL ΔptpB (protein tyrosine phosphatase B) was studied because the protein PtpB is assumed to be an arginine phosphatase. A gel-free approach was applied to analyze the changes in the phosphoproteome of the deletion mutant ΔptpB and the wild type in growing cells, thereby focusing on the occurrence of phosphorylation on arginine residues. In order to enhance the reliability of identified phosphorylation sites at arginine residues, a subset of arginine phosphorylated peptides was chemically synthesized. Combined spectral libraries based on phosphoenriched samples, synthetic arginine phosphorylated peptides and classical proteome samples provide a sophisticated tool for the analysis of arginine phosphorylations. This way, 212 proteins phosphorylated on serine, threonine, tyrosine or arginine residues were identified within the mutant ΔptpB and 102 in wild type samples. Among them, 207 arginine phosphosites were identified exclusively within the mutant ΔptpB, widely distributed along the whole bacterial metabolism. This identification of putative targets of PtpB allows further investigation of the physiological relevance of arginine phosphorylations and provides the basis for reliable quantification of arginine phosphorylations in bacteria.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Biblioteca de Péptidos , Péptidos/metabolismo , Fosforilación
8.
Environ Microbiol ; 19(6): 2320-2333, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276126

RESUMEN

Mobile genomic islands distribute functional traits between microbes and habitats, yet it remains unclear how their proteins adapt to new environments. Here we used a comparative phylogenomic and proteomic approach to show that the marine bacterium Pseudoalteromonas haloplanktis ANT/505 acquired a genomic island with a functional pathway for pectin catabolism. Bioinformatics and biochemical experiments revealed that this pathway encodes a series of carbohydrate-active enzymes including two multi-modular pectate lyases, PelA and PelB. PelA is a large enzyme with a polysaccharide lyase family 1 (PL1) domain and a carbohydrate esterase family 8 domain, and PelB contains a PL1 domain and two carbohydrate-binding domains of family 13. Comparative phylogenomic analyses indicate that the pathway was most likely acquired from terrestrial microbes, yet we observed multi-modular orthologues only in marine bacteria. Proteomic experiments showed that P. haloplanktis ANT/505 secretes both pectate lyases into the environment in the presence of pectin. These multi-modular enzymes may therefore represent a marine innovation that enhances physical interaction with pectins to reduce loss of substrate and enzymes by diffusion. Our results revealed that marine bacteria can catabolize pectin, and highlight enzyme fusion as a potential adaptation that may facilitate microbial consumption of polymeric substrates in aquatic environments.


Asunto(s)
Adaptación Fisiológica/genética , Gammaproteobacteria/metabolismo , Pectinas/metabolismo , Polisacárido Liasas/genética , Secuencia de Aminoácidos , Gammaproteobacteria/genética , Transferencia de Gen Horizontal/genética , Secuencias Repetitivas Esparcidas/genética , Proteómica
9.
J Proteome Res ; 15(12): 4532-4543, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27712078

RESUMEN

Porphyromonas gingivalis is an oral pathogen associated with the inflammatory disease periodontitis. Periodontitis and P. gingivalis have been associated with rheumatoid arthritis. One of the hallmarks of rheumatoid arthritis is the loss of tolerance against citrullinated proteins. Citrullination is a post-translational modification of arginine residues, leading to a change in structure and function of the respective protein. This modification, which is catalyzed by peptidylarginine deiminases (PADs), plays a role in several physiological processes in the human body. Interestingly, P. gingivalis secretes a citrullinating enzyme, known as P. gingivalis PAD (PPAD), which targets bacterial and human proteins. Because the extent of P. gingivalis protein citrullination by PPAD was not yet known, the present study was aimed at identifying the extracellular proteome and citrullinome of P. gingivalis. To this end, extracellular proteins of two reference strains, two PPAD-deficient mutants, and three clinical isolates of P. gingivalis were analyzed by mass spectrometry. The results uncovered substantial heterogeneity in the extracellular proteome and citrullinome of P. gingivalis, especially in relation to the extracellular detection of typical cytoplasmic proteins. In contrast, the major virulence factors of P. gingivalis were identified in all investigated isolates, although their citrullination was shown to vary. This may be related to post-translational processing of the PPAD enzyme. Altogether, our findings focus attention on the possible roles of 6 to 25 potentially citrullinated proteins, especially the gingipain RgpA, in periodontitis and rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/microbiología , Citrulina/metabolismo , Porphyromonas gingivalis/química , Proteoma/análisis , Proteínas Bacterianas/metabolismo , Infecciones por Bacteroidaceae , Humanos , Hidrolasas/metabolismo , Periodontitis/microbiología , Porphyromonas gingivalis/patogenicidad , Procesamiento Proteico-Postraduccional , Desiminasas de la Arginina Proteica , Factores de Virulencia
10.
Int J Med Microbiol ; 304(2): 121-32, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24457182

RESUMEN

Phosphorylation events on proteins during growth and stress/starvation can represent crucial regulation processes inside the bacterial cell. Therefore, serine, threonine and tyrosine phosphorylation patterns were analyzed by two powerful complementary proteomic methods for the human pathogen Staphylococcus aureus. Using 2D-gel analysis with a phosphosensitive stain (Pro-Q Diamond) and gel-free titanium dioxide based phosphopeptide enrichment, 103 putative phosphorylated proteins with successfully mapped 68 different phosphorylation sites were found in the soluble proteome of S. aureus. Additionally, in a proof of concept study, 8 proteins phosphorylated on arginine residues have been identified. Most important for functional analyses of S. aureus, proteins related to pathogenicity and virulence were found to be phosphorylated: the virulence regulator SarA, the potential antimicrobial target FbaA and the elastin-binding protein EbpS. Besides newly identified phosphorylation sites we compared our dataset with existing data from literature and subsequent experiments revealed additional phosphorylation events on highly conserved localizations in FbaA. Differential analysis of phosphorylation signals on the 2D-gels showed significant changes in phosphorylation under different physiological conditions for 10 proteins. Among these, we were able to detect newly appearing signals for phosphorylated isoforms of FdaB and HchA under nitrosative stress conditions.


Asunto(s)
Proteínas Bacterianas/análisis , Fosfoproteínas/análisis , Proteoma/análisis , Staphylococcus aureus/química , Adaptación Fisiológica , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Espectrometría de Masas , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...